Search results for "risk priority number"
showing 4 items of 4 documents
Fuzzy FMECA analysis of radioactive gas recovery system in the SPES experimental facility
2021
Abstract Selective Production of Exotic Species is an innovative plant for advanced nuclear physic studies. A radioactive beam, generated by using an UCx target-ion source system, is ionized, selected and accelerated for experimental objects. Very high vacuum conditions and appropriate safety systems to storage exhaust gases are required to avoid radiological risk for operators and people. In this paper, Failure Mode, Effects, and Criticality Analysis of a preliminary design of high activity gas recovery system is performed by using a modified Fuzzy Risk Priority Number to rank the most critical components in terms of failures and human errors. Comparisons between fuzzy approach and classic…
Risk assessment of component failure modes and human errors using a new FMECA approach: application in the safety analysis of HDR brachytherapy
2014
Failure mode, effects and criticality analysis (FMECA) is a safety technique extensively used in many different industrial fields to identify and prevent potential failures. In the application of traditional FMECA, the risk priority number (RPN) is determined to rank the failure modes; however, the method has been criticised for having several weaknesses. Moreover, it is unable to adequately deal with human errors or negligence. In this paper, a new versatile fuzzy rule-based assessment model is proposed to evaluate the RPN index to rank both component failure and human error. The proposed methodology is applied to potential radiological over-exposure of patients during high-dose-rate brach…
Safety study of an LNG regasification plant using an FMECA and HAZOP integrated methodology
2015
Abstract A safety analysis was performed to determine possible accidental events in the storage system used in the liquefied natural gas regasification plant using the integrated application of failure modes, effects and criticality analysis (FMECA) and hazard and operability analysis (HAZOP) methodologies. The goal of the FMECA technique is the estimation of component failure modes and their major effects, whereas HAZOP is a structured and systematic technique that provides an identification of the hazards and the operability problems using logical sequences of cause-deviation-consequence of process parameters. The proposed FMECA and HAZOP integrated analysis (FHIA) has been designed as a …
FMECA Application in Tomotherapy: Comparison between Classic and Fuzzy Methodologies
2022
Accident analysis in radiotherapy highlighted the need to increase quality assurance (QA) programs by the identification of failures/errors with very low probability (rare event) but very severe consequences. In this field, a Failure Mode, Effects and Criticality Analysis (FMECA) technique, used in various industrial processes to rank critical events, has been met with much interest. The literature describes different FMECA methods; however, it is necessary to understand if these tools are incisive and effective in the healthcare sector. In this work, comparisons of FMECA methodologies in the risk assessment of patients undergoing treatments performed with helical tomotherapy are reported. …